
Introduction to Mesh Parameterization

Richard Liu

September 23, 2021

1 Introduction

Surface parameterization involves the problem of constructing a (bijective) map between
two surfaces with similar topology. This problem has its roots in map-making from over
2000 years ago – attempting to make a map of the Earth, or in essence taking a 3D sphere
and flattening it into the 2D plane. An unfortunate fact is that it is in fact impossible to
get a “perfect" map of the Earth, in that the resulting map perfectly preserves both lengths
and angles (an isometric parameterization). We will investigate this further later in the
notes, but in the context of a subproblem that is fundamental to computer graphics: mesh
parameterization.

Mesh parameterization is the problem of computing a mapping between a surface
represented by a triangular mesh and another surface. The surface that the mesh is mapped
to is referred to as the parameter domain. Mesh parameterization is a fundamental
problem in computer graphics that has only become more ubiquitous in the past two decades
due to its growing use as a tool in mesh processing applications. Some examples of these
applications include:

• Detail mapping and transfer: by storing the per-triangle details (e.g. color, bump
maps, animation data, etc.) and mapping them to a common parameter domain (in
2D), one can transfer this data between surfaces

• Mesh completion: meshes generated from scans often contain holes are disconnected
components, which can be repaired if a template already exists that can be mapped
to the problematic scan in question

• Correspondence between objects: by mapping to a common domain, one can also
analyze the common factors between objects to establish a correspondence between
common features/construct a taxonomy for a database

• Remeshing: certain triangulations are more desirable than others of the same surface
(e.g. for numerical simulations). A common technique is to parameterize a surface,
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triangulate the parameterization in a desired way, then map the triangulation back.

2 Basic Definitions and Framework

Here we review some basic definitions and properties from differential geometry and analy-
sis.

Given a function f : X → Y ,

Definition 2.1. f is injective or one-to-one, if ∀x, x′ ∈ X, f(x) = f(x′)⇒ x = x′.

Definition 2.2. f is surjective or onto, if ∀y ∈ Y,∃x ∈ Xs.t.y = f(x).

Definition 2.3. f is bijective if f is both injective and surjective. Equivalently, f is bijective
iff it is invertible.

Note that if the codomain (Y ) of f is equal to its image (f(X)), then f is trivially surjective.
In most cases for mesh parameterization, we assume the image to be the codomain, so
injectivity is the property we mostly care about.

Now we establish the framework for parameterization. Let Ω ⊂ R2 be a simply connected
(without holes) region. Let f : Ω→ R3 be continuous and injective. Then we call the image
of f a surface

S = f(Ω) = {f(u, v) : (u, v) ∈ Ω}

We say that f is a parameterization of S over the parameter domain Ω. Observe
that f is a bijection between Ω and S by definition. Below is a basic example for the
parameterization of a unit cylinder.

Figure 1: Parameterization of Unit Cylinder

• Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
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• Surface: S = {(x, y, z) ∈ R:x2 + y2 = 1, z ∈ [0, 1]}

• Parameterization: f(u, v) = (cosu, sinu, v)

• Inverse: f−1(x, y, z) = (arccosx, z)

Remark. A parameterization f : Ω → S is never unique. Given any bijection γ : Ω → Ω,
g = f ◦ γ is a parameterization of S over Ω.

We just need a few more assumptions on f to be able to use it for deriving some important
intrinsic surface properties, or properties that are independent of how the surface sits
in space (extrinsic geometry). Another useful way of understanding this is that intrinsic
properties are those knowable to a tiny observer living on the surface (like how humans can
observe the curvature of the Earth without ever knowing that the Earth is actually hurtling
30 km per second around the Sun).

First observe that the partial derivatives of f , fu = ∂f
∂u and v = ∂f

∂v (note that these are
functions from R2 to R3) span the local tangent plane. Thus we can derive the surface
normal

nf =
fu × fv
||fu × fv||

Here we require that our parameterization f is regular.

Definition 2.4. A parameterization f : Ω ⊂ R2 → S ⊂ R3 is regular if the tangent vectors
fu and fv are always linearly independent.

This ensures that the surface normal nf is non-zero.

Remark. The surface normal is always independent of the parameterization, regardless of
the surface, making it an intrinsic property.

The parameterization also relates directly to the first fundamental form and second
fundamental form. They are fundamental precisely because they determine the key metric
properties of a surface, such as the gaussian curvature, mean curvature, and surface
area.

Definition 2.5. The first fundamental form is defined through the parameterization f as

If =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
E F
F G

)
We can then define the area of our surface

A(S) =

∫
Ω

√
det(If )dudv

In order to derive the second fundamental form, we require that the parameterization is
twice differentiable.
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Definition 2.6. The second fundamental form is defined as

IIf =

(
fuu · nf fuv · nf
fuv · nf fvv · nf

)
=

(
L M
M N

)

Definition 2.7. The Gaussian curvature is

K = det(I−1
f IIf ) =

det IIf
det If

=
LN −M2

EG− F 2

Definition 2.8. The mean curvature is

H =
1

2
trace(I−1

f IIf ) =
LG− 2MF +NE

2(EG− F 2)

Applying these definitions to the parameterization of the cylinder above, we get that K = 0
and H = 1

2 . The cylinder is often the canonical example of a surface with 0 gaussian
curvature.

Definition 2.9. A surface S is developable if ∀p ∈ S, K(p) = 0, i.e. the Gaussian
curvature is 0 everywhere on S.

The above definition will be key in our discussion of parameterization properties.

Now we turn to the Jacobian of f

Definition 2.10. The Jacobian of parameterization f is the 3 x 2 matrix of partial
derivatives of f .

Jf = (fu, fv)

Observe that the first fundamental form can be rewritten as

JT
f Jf =

(
fTu
fTv

)
(fufv) = If

which should make it clear that I is a symmetric matrix. Thus the eigenvalues λ1 and λ2

are given by

λ1,2 =
1

2
((E +G)±

√
4F 2 + (E −G)2

.

We can also make use of the following fact from linear algebra

Remark. For a matrix A, the singular values are the square roots of the eigenvalues of ATA.

where the singular values are defined as the diagonal entries σ1, σ2 in the singular value
decomposition.
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Definition 2.11. SVD For any m × n matrix J , the singular value decomposition
(SVD) is given by

J = UΣV T

where Σ is an m × n diagonal matrix, and U and V are m ×m and n × n orthonormal
matrices, respectively.

By the above, the SVD of the Jacobian is thus

Jf = U

σ1 0
0 σ2

0 0

V T

where σ1 =
√
λ1, σ2 =

√
λ2.

With the above in place, we can now start talking about what makes a “good" parameteri-
zation.

3 Properties of Parameterizations

As mentioned in the introduction, most of the time there does not exist an isometric map
from a surface to the plane, i.e. a map which perfectly preserves both angles and areas. Maps
which preserve each individually are called conformal and equiareal, respectively.

Definition 3.1. A parameterization is conformal, or angle-preserving, when the singular
values of the Jacobian are equal, i.e. σ1 = σ2.

Definition 3.2. A parameterization is equiareal/authalic, or area-preserving, when
the singular values of the Jacobian multiply to 1, i.e. σ1σ2 = 1.

Definition 3.3. A parameterization is isometric, or length-preserving iff it is conformal
and equiareal, i.e. σ1 = σ2 = 1.

As a matter of fact, Gauss showed the following in 1827.

Theorem 1. Globally isometric parameterizations (from 3D to 2D) only exist for devel-
opable surfaces (i.e. K = 0 everywhere).

Examples of developable surfaces include planes, cones, and cylinders, but most surfaces
are not developable. Due to the above theoretical constraint, surface parameterization
approaches will focus on finding a mapping that is either conformal, equiareal, or some
combination of the two. From the above definitions, we know that the singular values of
the Jacobian completely determine the distortion from parameterization. Thus a common
form of a function to minimize to obtain the “best" parameterization is taking the average
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distortion over the whole domain,

E(f) =

∫
Ω
E(σ1(u, v), σ2(u, v))dudv/A(Ω)

where E is some function with minimal value(s) defined depending on the desired property
(e.g. for conformal parameterization you want E to take on a minimum value along the
entirety of (x, x) for x ∈ R+).

4 Discrete/Mesh Setting

The above framework establishes the general framework for thinking about surface pa-
rameterizations. Now let’s focus on the issue of triangle meshes specifically, which can be
considered as piecewise linear surfaces.

Definition 4.1. A mesh is a triangulationM = (V,E, F ), where V = {vi} ⊂ R3, E = {eij},
and F = {fijk} are the vertex, edge, and face sets, respectively. More formally, edge eij
represents the convex hull between vertices vi and vj (i.e. line segment), and face fijk is the
convex hull of non-collinear points vi, vj , vk.

Not confusingly at all, we now care about the inverse of the parameterization f of M ,
g = f−1. g is uniquely determined by the following:

• Parameter points ui = g(vi)∀vi ∈ V

• g is continuous and linear within each triangle F

• For each triangle fijk = {vi, vj , vk}, g is a linear map from fijk to parameter triangle
f̃ijk = {ui, uj , uk}

• The parameter domain is defined as the union of all parameter triangle Ω =
⋃
f̃ijk

4.1 Desirable Properties

We already discussed two key properties of parameterizations in general: conformality
and equiareality. An important goal in the case of applications of mesh parameterization
is bijectivity. Bijectivity is a requirement for most, if not all, mesh processing applications.
An example for texture mapping is that when the map is not bijective, a single point in the
texture could map to multiple, disconnected regions of the surface, which makes annotating
different regions of the surface impossible.

However, certain applications are satisfied with just local injectivity/bijectivity (recall
from above that we assume the image and codomain are the same).
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Definition 4.2. A mesh parameterization is locally injective if no triangles change
orientation (“flip” or “fold over”) during the parameterization. Concretely, this results in an
inverted normal of the flipped triangle.

Definition 4.3. A mesh parameterization is globally bijective if it is locally injective
and the boundary of the parameterization does not intersect itself.

An example of a parameterization that is locally injective, but not globally bijective is shown
in figure 5. The wavy cone is isometrically flattened without error, but the boundary ends
up self-intersecting.

Figure 2: Locally injective but not globally bijective parameterization

Early methods of mesh parameterization relied on fixing the boundary of the surface
to the boundary of a convex polygon that forms the parameter domain. In certain in-
stances, this guarantees bijectivity, at the expense of potentially high distortion because
the surface boundary is complex/non-convex. As a result, boundary-free methods were
introduced. In the following section, I will categorize the existing methods starting with
this boundary vs boundary-free distinction, due to the somewhat chronological order they
are introduced.

In general, mesh parameterization methods can be characterized by the following set of
properties:

• Distortion minimized: {angle (conformal), area (equiareal), distance (isometric)}

• Boundary: {fixed, free}

7



• Bijectivity: {global, local}

5 Methods

5.1 Boundary-Based Maps

Boundary-based, or barycentric mappings all follow the same general procedure.

1. Choose the shape of the boundary of the parameter domain and the distribution
of the parameter points around the boundary.

2. Compute barycentric coordinates for the interior vertices

3. Solve a linear system based around minimizing the spring energy of the mesh
represented as a spring network.

Barycenteric coordinates are simply a way of representing an interior point in a polygon
(typically triangle) as a linear combination of its vertices. These coordinates have found
their way into many essential applications in rendering, geometric modeling, etc.

Definition 5.1. For a point x in the interior of a triangle fijk = {vi, vj , vk}, values λi, λj ,
λk are barycentric coordinates of x with respect to the vertices of fijk if:

1. x = λivi + λjvj + λkvk

2. λi + λj + λk = 1

Note that the above definition is applied to triangle meshes specifically, but can easily be
generalized to any n-gon meshes.

Remark. For triangle meshes, the barycentric coordinates of an interior point are unique.
This is not the case for any polygons with more than 3 vertices.

Suppose we have a mesh M with n interior vertices and b boundary vertices. For a vertex
xi, let Ni represent the set of its neighboring vertices. Finally, for xj ∈ Ni, let λij be the
barycentric coordinate at xj for source vertex xi. The linear system is then represented
as

AU = U

AV = V

where U = (u1, . . . , un) and V = (v1, , vn) are the parameter coordinates of the interior
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vertices of the mesh. U and V are column vectors defined by

ui =
∑

uj∈Ni,j>n

λijuj

vi =
∑

vj∈Ni,j>n

λijvj

A = (aij) is an n× n matrix defined by

aij =


1 if i = j

−λij if j ∈ Ni

0 otherwise

Below is a brief synopsis of the most popular boundary fixed methods, along with their
properties and drawbacks.

1. (Tutte, 1963) was the first to introduce the above-described framework into the mesh
parameterization context with his seminal work on straight-line embeddings of planar
graphs, where the coefficients λij are defined uniformly, so that λij = 1/|Ni|, which are
notably not barycentric coordinates. Tutte’s embeddings do not offer any guarantee
of distortion minimization, but do guarantee bijectivity.

2. (Eck et al., 1995) method makes use of harmonic coordinates, or cotangent
weights, which are another type of barycentric coordinates, defined by normalizing
wij = cot γij+cot γji across the vertex neighbors of xi, with γ representing the adjacent
edge angles between xi and xj . The harmonic parameterization aims to minimize angle
distortion. One major drawback is that if the mesh contains obtuse angles, then
the weights can be negative, which results in a non-bijective parameterization.

3. (Floater, 2003) discretized the mean value theorem in order to present another set of
barycentric coordinates called mean value coordinates. Like (Eck et al., 1995)’s
method, mean value coordinates do not require the 1-ring of neighboring faces to
be coplanar. These coordinates are also applied in minimizing angular distortion in
parameterization.

4. The above methods all perform poorly when the 3D meshes have non-convex boundaries
or boundaries that differ significantly from the boundary of the parameter domain.
Lee et al. 2007 introduce the idea of a “virtual" boundary, which augments the 3D
boundary with extra triangles to make the boundary nicer and ultimately decrease
the large distortions generated by problematic boundaries. Lee et al. then apply mean
value coordinates to the actual parameterization.

5. (Jiang et al., 2017) offer a more recent look at the use of scaffolding, which similarly
involves generating a virtual boundary with a particular triangulation, which is then
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iteratively updated based on some metric, an isometric distortion energy in this case.
Here the boundary isn’t completely fixed, but is not totally free either. This method
also suffers from high computational cost, requiring a re-triangulation of the scaffold
for every iteration.

As discussed above, fixing the boundary comes with the convenience of limited guarantees of
bijectivity and fast, linear-time solutions. However, it comes at the cost of high distortion in
cases where the surface has highly non-convex boundaries, or there is no “natural" way to fix
the 3D border on a convex polygon. In the next section we discuss state-of-the-art methods
that “free" the boundary, dragging the choice of boundary vertices into the optimization
process.

5.2 Boundary-Free Maps

Boundary-free methods are far more varied, but can be divided into three broad camps on
the basis of their distortion-minimizing objective: conformal, authalic/equiareal, and
isometric. Due to the sheer volume of methods that have been developed for each of these
objectives, I will focus primarily on the conformal methods, with one exception of ARAP (an
isometric method), and provide a brief primer on deformation analysis in order to motivate
mathematical intuition behind the techniques.

5.2.1 Deformation analysis for meshes

Recall in the context of mesh parameterization, the parameterization function is piecewise
linear for each triangle on the mesh. We can thus supply a local basis to each triangle,
setting one of the vertices to the origin, as demonstrated in Figure 3

Figure 3: Local Basis for 3D Triangle

In this local basis, we can define the coordinates of any point p in the triangle as (pX , pY ),
or (X,Y ) for convenience (just remember that this is different from the orthonormal bases
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X and Y). So now our inverse parameterization function becomes{
u(X,Y ) = λiui + λjuj + λkuk

v(X,Y ) = λivi + λjvj + λkvk
(1)

where λ is computed as the barycentric coordinates of our point p in 3D space.λiλj
λk

 =
1

2|T |X,Y

Yj − Yk Xk −Xj XjYk −XkYj
Yk − Yi Xi −Xk XkYi −XiYk
Yi − Yj Xj −Xi XiYj −XjYi

XY
1

 (2)

where 2|T |X,Y is double the area of the triangle in 3D space.

Through a simple substitution of the values of λ defined above into our inverse parame-
terization equation, we get the following equation for the gradient of u (equivalently for
v) (

∂u/∂X
∂u/∂Y

)
= MT

uiuj
uk

 =
1

2|T |X,Y

(
Yj − Yk Yk − Yi Yi − Yj
Xk −Xj Xi −Xk Xj −Xi

)uiuj
uk

 (3)

Note that MT is solely dependent on the geometry of triangle T . These gradients of the
inverse function will prove to be useful in developing intuition for the conformal methods
described below.

We now tie the concept of conformality back to our original framework. Recall from our
differential geometry review that conformality implies that the singular values of the Jacobian
(of the forward parameterization function f) are equal (σ1 = σ2). This implies that the
Jacobian matrix is composed of a rotation and a scaling, aka a similarity.

Remark. Conformal maps locally correspond to similarities.

A visual way of describing this is that a conformal parameterization transforms elementary
circles to elementary circles, and that the gradient vectors fu and fv are orthogonal, as show
in Figure 4. Again this does not guarantee area/length preservation, which requires that
σ1 = σ2 = 1 as well.
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Figure 4

5.2.2 LSCM/DCP

The Least squares conformal maps (LSCM) method from (Lévy et al., n.d.) expresses
the conformality condition as a quadratic optimization problem, specifically linear least
squares. It has been well-established that a method introduced in the same year, Discrete
Conformal Parameterization (DCP) from (Desbrun et al., 2002) are different derivations
of the same measure of conformal energy, and thus equivalent optimization problems.
We can understand the LSCM method in terms of a simple geometric relationship between
the gradients of the inverse parameterization function. Take one triangle on the mesh,
with orthonormal basis (X,Y ). The conformality condition can be written as

∇v = rot90(∇u) =

(
0 −1
1 0

)
∇u

where rot90 is a counterclockwise 90 degree rotation. Substituting in the gradient formula
derived in 3, we get the following conformality condition

Mt

vivj
vk

− (0 −1
1 0

)
Mt

uiuj
uk

 =

(
0
0

)
(4)
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Though we know from the Riemann mapping theorem that every continuous surface admits
a conformal parameterization, this is restricted to developable surfaces for our discrete,
piecewise linear setting. Thus, 4 does not have a solution for most meshes. Levy et al
formulate a conformal energy metric based on minimizing the deviation of a mapping
from 4.

ELSCM =
∑
Ti,j,k

|T |

∥∥∥∥∥∥Mt

vivj
vk

− (0 −1
1 0

)
Mt

uiuj
uk

∥∥∥∥∥∥
2

(5)

Note that 5 will look different than the term in Levy et al, as they take a complex analysis
approach. I avoid the complex analysis discussion here for simplicity.

To avoid the trivial solution (sending all parameter coordinates to (0,0)), Levy et al. propose
to pin two arbitrary vertices to the parameter domain at coordinates (0,0) and (1,1) (common
endpoints for texture coordinates). A heuristic they use is to pin two diameter vertices, but
any choice of pinned vertices would suffice.

Desbrun et al. end up deriving the same conformal energy problem in DCP, albeit through
the minimization of the dirichlet energy.

Definition 5.2. Given a parameterization f : Ω ⊂ R2 → S ⊂ R3, the Dirichlet energy
measures the integral of the squared norm of the gradients.

ED =
1

2

∫
S
||fu||2 + ||fv||2dp

The Dirichlet energy can also be expressed in terms of the singular values σ1, σ2 of the
Jacobian

ED =
σ2

1 + σ2
2

2

The equivalence of the minimization can easily be seen if we also write our conformal energy
formula in terms of the singular values.

ELSCM = EC =
1

2

∫
S
||fv − rot90(fuX)||2dp =

(σ1 − σ2)2

2

So now we have
ED − EC = σ1σ2

But note that this is the product of the singular values of the Jacobian, which is equivalent
to the determinant! The determinant of the Jacobian also has an incredibly useful
geometric interpretation, which is simply the area of the 3D surface. Thus, we have the
final relationship between conformal energy and Dirichlet energy

ED − EC = det(J) = Area(S)
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Since the 3D surface area is constant, the DCP and LSCM methods are equivalent!

Unfortunately, one striking weakness of LSCM/DCP is that they do not guarantee local
injectivity nor prevent global overlaps.

Other properties of LSCM/DCP include

• The LSCM energy is a flawed metric: the energy is scaled by the area of the parameter
domain, which is dependent on the choice of pinned vertices

• Linear complexity (just as fast as the fixed-boundary methods)

A noteworthy extension to LSCM/DCP is spectral conformal parameterization. (Mullen et
al., 2008) are able to find a solution that minimizes conformal energy without having to pin
2 boundary vertices. Their approach makes use of generalized eigenvalue problem of the
form

Lcu = λBu

where u is the target parameterization and B is a degenerate diagonal binary matrix whose
nonzero entries correspond to the boundary vertices.

5.2.3 MIPS

The mostly isometric parameterization of surfaces method ((Hormann et al., n.d.)) is the
first known method to compute natural boundaries. This approach minimizes the Dirichlet
energy per parameter-space area.

KF (JT ) = ||JT ||F ||J−1
T ||F =

σ2
1 + σ2

2

σ1σ2
=

trace(IT )

det JT

(Hormann et al., n.d.) are able to guarantee bijectivity through an iterative approach,
moving vertices to minimize the energy, while simultaneously checking for flips and boundary
overlaps. This iterative approach comes at the cost of being extremely slow.

5.2.4 ABF

The angle-based flattening approach by Sheffer and de Sturler 2001 is based on the following
key observation:

Remark. A planar triangulation is defined by the corner angles of triangles (up to similarity).

They thus formulate the objective in angle space rather than over vertices like the previous
methods. Specifically they minimize the objective

D(αi) =
3T∑
i=1

(αi − βi)2
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where βi are the known 3D angles and αi are the unknown 2D angles.

Sheffer and Sturler impose the following constraints on the 2D parameter angles to ensure a
valid triangulation

• All angles are positive

• All angles in each triangle sum to π

• The sum of angles around each vertex is 2π

• Edges shared by adjacent triangles have same length

This approach has the following properties

• Locally bijective (but not global)

• Non-linear (slow) and unstable for large meshes

Some noteworthy extensions of ABF include Zayer et al 2003, who enforce convex bound-
aries on the parameter domain to guarantee global bijectivity, and (Kharevych et al., n.d.),
who introduce cone singularities to generate a global parameterization. This parameter-
ization is continuous up to translation and rotation, other than at the singularities. They
also need to compute edge paths between the cone singularity vertices to parameterize
to the plane. Figure 5 demonstrates an example of a global parameterization with cone
singularities.
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Figure 5: Global parameterization with cone singularities

5.2.5 Other Methods

As-rigid-as-possible parameterization was introduced by (Liu et al., 2008). to optimize
a measure of isometric distortion. The authors apply a local-global optimization approach,
where they iterate over each triangle, find the best rigid transformation (using the ARAP
energy in Sorkine & Alexa), and stitch the triangles together through global linear system
of equations. Similar to LSCM, however, ARAP does not offer any theoretical guarantees of
local/global bijectivity. ARAP has been demonstrated to improve the area distortion when
initialized with a conformal parameterization, such as LSCM, in Figure 6.
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Figure 6: ARAP Progression when Initialized with LSCM

5.3 Discussion

Mesh parameterizations methods in general can be categorized by whether they fix the
boundary, which distortion they are minimizing, and their complexity (linear vs nonlinear).
In general the barycentric mappings, along with LSCM/DCP, are linear and fast to compute.
However, they do not guarantee bijectivity and may induce substantial area distortion in the
presence of high curvature, as shown in Figure 7. In contrast, non-linear methods such as
MIPS and ABF are slow, but make some guarantees as to bijectivity and may outperform
the linear methods, as shown in Figure 8.
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Figure 7: Linear methods
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Figure 8: Non-linear methods
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