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Introduction

Surface parameterization: some mapping f : S → Ω where
S ⊂ R3 is a 3D surface and Ω ⊂ R2 or R3

Historical motivation: cartography

Turns out it is impossible to make a 2D map of the Earth without
some distortion and/or cutting.
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Surface parameterization: some mapping f : S → Ω where
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Introduction

Surface parameterization: some mapping f : S → Ω where
S ⊂ R3 is a 3D surface and Ω ⊂ R2 or R3

Mesh parameterization: when S is a (triangle) mesh and
Ω ⊂ R2, then we define a piecewise linear function f : S → Ω.

Conformal mesh parameterization: “angle-preserving” maps
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Mesh Parameterization Applications

Figure: Parameterization Applications
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Mesh Parameterization Applications

Figure: Texture Mapping
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Introduction

Recall: in assignment 2, you were asked to generate a texture map
for each face of the cube
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Introduction

Recall: in assignment 2, you were asked to generate a texture map
for each face of the cube

This is an example of a parameterization. Namely, a
piecewise linear map f : R3 → R2.
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Introduction

Okay, but what if we want to paste the whole image onto the
whole cube?
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Okay, but what if we want to paste the whole image onto the
whole cube?
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Introduction

Okay, but what about something a bit more challenging?

Richard Liu Conformal Mesh Parameterization



Introduction

This lecture: establish mathematical foundations for classical
parameterization techniques in geometry processing.
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parameterization techniques in geometry processing.

We will build up towards a full derivation of the LSCM (Least
Squares Conformal Maps) method. You will need to use this
technique to do textures in your final project!
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Introduction

This lecture: establish mathematical foundations for classical
parameterization techniques in geometry processing.

We will build up towards a full derivation of the LSCM (Least
Squares Conformal Maps) method. You will need to use this
technique to do textures in your final project!

Let’s do some math.
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Mathematical Framework

Given a function f : X → Y ,

Definition

f is injective or one-to-one, if ∀x , x ′ ∈ X , f (x) = f (x ′)⇒ x = x ′.
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Given a function f : X → Y ,

Definition

f is injective or one-to-one, if ∀x , x ′ ∈ X , f (x) = f (x ′)⇒ x = x ′.

Definition

f is surjective or onto, if ∀y ∈ Y ,∃x ∈ X s.t. y = f (x).
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Mathematical Framework

Definition

Let Ω ⊂ R2 be a simply connected (without holes) region.
Let f : Ω→ R3 be continuous and injective. The image of f is
called a surface

S = f (Ω) = {f (u, v) : (u, v) ∈ Ω}

We say that f is a parameterization of S over the parameter
domain Ω.
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called a surface
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We say that f is a parameterization of S over the parameter
domain Ω.
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Mathematical Framework

Definition

Let Ω ⊂ R2 be a simply connected (without holes) region.
Let f : Ω→ R3 be continuous and injective. The image of f is
called a surface

S = f (Ω) = {f (u, v) : (u, v) ∈ Ω}

We say that f is a parameterization of S over the parameter
domain Ω.

Note: By construction, f : Ω→ S is trivially surjective. In practice
injectivity is often what we care about.
Note 2: In practice we care about the inverse map f −1 : S → Ω,
but we formulate in this way for the math to make sense.
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
Surface: S = {(x , y , z) ∈ R3 : x2 + y2 = 1, z ∈ [0, 1]}
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Mathematical Framework

Example

Parameter domain: Ω = {(u, v) ∈ R2 : u ∈ [0, 2π), v ∈ [0, 1]}
Surface: S = {(x , y , z) ∈ R:x2 + y2 = 1, z ∈ [0, 1]}
Parameterization: f (u, v) = (cos u, sin u, v)
Inverse: f −1(x , y , z) = (arccos x , z)
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Mathematical Framework

Remark

A parameterization f : Ω→ S is never unique. Given any bijection
γ : Ω→ Ω, g = f ◦ γ is a parameterization of S over Ω.
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Mathematical Framework

We can use f for deriving some key intrinsic surface properties,
or properties that are independent of how the surface sits in space
(extrinsic geometry).
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Mathematical Framework
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Mathematical Framework

Definition

A parameterization f : Ω ⊂ R2 → S ⊂ R3 is regular if the tangent
vectors fu = ∂f

∂u and fv = ∂f
∂v are always linearly independent.

Note: fu, fv are functions from R2 to R3 and span the local
tangent plane.
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||

Note: regularity is required for nf to be nonzero everywhere.
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Mathematical Framework

Definition

Given a regular parameterization f , the surface normal nf is
defined as

nf =
fu × fv
||fu × fv ||

The surface normal is an intrinsic property, which means it is the
same independent of the parameterization f.
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Mathematical Framework

We can also apply f towards deriving the first and second
fundamental forms, If and II f .
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Mathematical Framework

We can also apply f towards deriving the first and second
fundamental forms, If and II f .

They are fundamental precisely because they characterize the key
metric properties of a surface, such as the gaussian curvature,
mean curvature, and surface area. They are also essential for
telling us about how the tangent vectors stretch, i.e.
parameterization distortion.

Richard Liu Conformal Mesh Parameterization



Mathematical Framework

Definition

Given parameterization f , the first fundamental form is defined
as

If =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
E F
F G

)
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Mathematical Framework

Definition

Given parameterization f , the first fundamental form is defined
as

If =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
E F
F G

)

Area of a Surface

Given parameterization f : Ω→ S , the area A(S) can be found

A(S) =

∫
Ω

√
det(If )dudv
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Mathematical Framework

Definition

Given a twice-differentiable parameterization f , the second
fundamental form is defined as

IIf =

(
fuu · nf fuv · nf
fuv · nf fvv · nf

)
=

(
L M
M N

)
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Mathematical Framework

Definition

The Gaussian curvature K is

K = det(I−1
f IIf ) =

det IIf
det If

=
LN −M2

EG − F 2
= κ1κ2

where κ1, κ2 are the principal curvatures (the curvatures along
the directions the surface bends the most).
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Definition

The Gaussian curvature K is

K = det(I−1
f IIf ) =

det IIf
det If

=
LN −M2

EG − F 2
= κ1κ2

where κ1, κ2 are the principal curvatures (the curvatures along
the directions the surface bends the most).
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Mathematical Framework
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Mathematical Framework

Definition

The mean curvature S is

S =
1

2
trace(I−1

f IIf ) =
LG − 2MF + NE

2(EG − F 2)
=
κ1 + κ2

2

where κ1, κ2 are the principal curvatures (the curvatures along
the directions the surface bends the most).
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Mathematical Framework

K = Gaussian curvature (intrinsic)
S = Mean curvature (extrinsic)
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Mathematical Framework

K = Gaussian curvature (intrinsic)
S = Mean curvature (extrinsic) → Careful: different notion of
instrinsic. invariant to parameterization but not to isometry
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Mathematical Framework

Definition

A surface S is developable if ∀p ∈ S , K (p) = 0, i.e. the Gaussian
curvature is 0 everywhere on S .
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Mathematical Framework

Definition

A surface S is developable if ∀p ∈ S , K (p) = 0, i.e. the Gaussian
curvature is 0 everywhere on S .

Theorem

(Gauss, 1827) Globally isometric parameterizations (from 3D to
2D) only exist for developable surfaces (i.e. K = 0 everywhere)
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Mathematical Framework
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Mathematical Framework

Definition

The Jacobian of parameterization f is the 3 x 2 matrix of partial
derivatives of f .

Jf = (fu, fv )
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Mathematical Framework

Definition

For any m × n matrix J, the singular value decomposition
(SVD) is given by

J = UΣV T

where Σ is an m× n diagonal matrix, and U and V are m×m and
n × n orthonormal matrices, respectively.
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Mathematical Framework

Definition

For any m × n matrix J, the singular value decomposition
(SVD) is given by

J = UΣV T

where Σ is an m× n diagonal matrix, and U and V are m×m and
n × n orthonormal matrices, respectively.

By the above, the SVD of the Jacobian is

Jf = U

σ1 0
0 σ2

0 0

V T

where σ1, σ2 are the singular values.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

If = JTf Jf =

(
fu · fu fu · fv
fv · fu fv · fv

)
=

(
f Tu
f Tv

)
(fu fv )

It is clear If is symmetric.
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Mathematical Framework

There is an easier way to get the singular values of the Jacobian.

Remark

We can write the first fundamental form as

If = JTf Jf =

(
f Tu
f Tv

)
(fu fv )

It is clear If is symmetric.

Thus the eigenvalues of If are given by

λ1,2 =
1

2
((E + G )±

√
4F 2 + (E − G )2

.
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.

The singular values of J can be found using the eigenvalues of If

σ1 =
√
λ1

σ2 =
√
λ2
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Mathematical Framework

Remark

For a matrix A, the singular values are the square roots of the
eigenvalues of ATA.

The singular values of J can be found using the eigenvalues of If

σ1 =
√
λ1

σ2 =
√
λ2

σ1 and σ2 tell us everything about the metric distortion induced
by the parameterization.
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Properties of Parameterizations

Parameterizations induce distortion in lengths, which can be
further divided into distortion in angles and distortion in areas.
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Properties of Parameterizations

Parameterizations induce distortion in lengths, which can be
further divided into distortion in angles and distortion in areas.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the
singular values of the Jacobian are equal, i.e. σ1 = σ2.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when the
singular values of the Jacobian are equal, i.e. σ1 = σ2.

Definition

A parameterization is equiareal/authalic, or area-preserving,
when the singular values of the Jacobian multiply to 1, i.e.
σ1σ2 = 1.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when
σ1 = σ2.

Definition

A parameterization is equiareal/authalic, or area-preserving,
when σ1σ2 = 1.

Definition

A parameterization is isometric, or length-preserving iff it is
conformal and equiareal, i.e. σ1 = σ2 = 1.
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Properties of Parameterizations

Definition

A parameterization is conformal, or angle-preserving, when
σ1 = σ2.

Definition

A parameterization is equiareal/authalic, or area-preserving,
when σ1σ2 = 1.

Definition

A parameterization is isometric, or length-preserving iff it is
conformal and equiareal, i.e. σ1 = σ2 = 1.
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Properties of Parameterizations

Richard Liu Conformal Mesh Parameterization



Properties of Parameterizations

Some intuition: the singular values induce scaling of the tangent
vectors of the mapped surface.

Figure: SVD Decomposition of mapping f̃
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Properties of Parameterizations

So can we always find an isometric parameterization to the plane?
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Properties of Parameterizations

So can we always find an isometric parameterization to the plane?
Nope. Recall:

Theorem

(Gauss, 1827) Globally isometric parameterizations (from 3D to
2D) only exist for developable surfaces (i.e. K = 0 everywhere)

Richard Liu Conformal Mesh Parameterization



Properties of Parameterizations

So how to find the “best” parameterization?
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Properties of Parameterizations

So how to find the “best” parameterization?

Take bivariate non-negative function E : R2
+ → R+ that takes local

distortion measures σ1 and σ2, and has minimum defined
according to objective.

E (f ) =

∫
Ω
E (σ1(u, v), σ2(u, v))dudv/A(Ω)
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Discrete Setting

Note that everything up until this point has been formulated in the
continuous setting. So what changes when we consider the discrete
mesh setting?
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Discrete Setting

Note that everything up until this point has been formulated in the
continuous setting. So what changes when we consider the discrete
mesh setting?

f can now be considered a piecewise linear map. Specifically, we
only have to care about how vertices are mapped to the plane.
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Discrete Setting

.
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Discrete Setting
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Discrete Setting

Our parameterization function is now f : Ω→ V where V is the
set of vertex positions in the mesh.
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Mesh Parameterization Properties

We already mentioned conformal, equiareal, and isometric maps.
Another important property for applications to meshes is
bijectivity.
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Mesh Parameterization Properties

We already mentioned conformal and equiareal, and isometric
maps. Another important property for applications to meshes is
bijectivity.

e.g. For texture mapping, want to be able to annotate parts of the
texture with reference to unique region of surface
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Mesh Parameterization Properties

Definition

A mesh parameterization is locally injective if no triangles change
orientation (“flip” or “fold over”) during the parameterization.

Definition

A mesh parameterization is globally bijective if it is locally
injective and the boundary of the parameterization does not
intersect itself.
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Mesh Parameterization Properties
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LSCM
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LSCM

LSCM. (Levy et al. 2002) The least squares conformal maps
method seeks to minimize the following conformal energy

ELSCM = EC =
1

2

∫
S
||fv − rot90(fuX )||2dp =

(σ1 − σ2)2

2
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LSCM

LSCM. (Levy et al. 2002) The least squares conformal maps
method seeks to minimize the following conformal energy

ELSCM = EC =
1

2

∫
S
||fv − rot90(fuX )||2dp =

(σ1 − σ2)2

2

Intuition: the gradient vectors fu and fv are orthogonal and have
the same norm (σ1 = σ2).
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LSCM

Recall how the singular values of the Jacobian scales tangent
vectors.
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LSCM

Paper’s perspective: Cauchy-Riemann equations from complex
analysis.

Theorem

If a function f (z) = u(x , y) + iv(x , y) is complex differentiable
(holomorphic), then it satisfies the partial differential equations

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x
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LSCM

Paper’s perspective: Cauchy-Riemann equations from complex
analysis.

Theorem

If a function f (z) = u(x , y) + iv(x , y) is complex differentiable
(holomorphic), then it satisfies the partial differential equations

∂u

∂x
=
∂v

∂y
∂u

∂y
= −∂v

∂x

Holomorphic implies conformality. This is equivalent to a
condition on the Jacobian.
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LSCM

This is equivalent to a condition on the Jacobian.

i
∂f

∂x
=
∂f

∂y
⇔
(
a −b
b a

)
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LSCM

This is equivalent to a condition on the Jacobian.

i
∂f

∂x
=
∂f

∂y
⇔
(
a −b
b a

)
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LSCM

Hold on a second ... several sneaky things happening here.
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LSCM

Hold on a second ... several sneaky things happening here.

The f in the Cauchy-Riemann system represents our inverse
parameterization function f −1 : S ⊂ R3 → Ω ⊂ R2. So what’s
the Jacobian again?
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LSCM

Hold on a second ... several sneaky things happening here.

The f in the Cauchy-Riemann system represents our inverse
parameterization function f −1 : S ⊂ R3 → Ω ⊂ R2. So what’s
the Jacobian again?
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LSCM

Every triangle in the mesh can be defined by its own coordinate
system.
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Every triangle in the mesh can be defined by its own coordinate
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LSCM

Every triangle in the mesh can be defined by its own coordinate
system.
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LSCM

Every triangle in the mesh can be defined by its own coordinate
system.

Use vector projection to get magnitude of (B-A) in the
direction of the local coordinate vectors.
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LSCM

One last problem: the current distortion formula has a degenerate
solution.
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LSCM

One last problem: the current distortion formula has a degenerate
solution.

f can just map everything to a constant, so DLSCM = 0!
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LSCM

One last problem: the current distortion formula has a degenerate
solution.

f can just map everything to a constant, so DLSCM = 0!

We can resolve this by setting boundary constraints, in this case
pinning two vertices to the corners of our texel grid ((0,0) and
(1,1)).
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LSCM

We can resolve this by setting boundary constraints, in this case
pinning two vertices to the corners of our texel grid ((0,0) and
(1,1)).
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LSCM

Finally, we can write the LSCM objective function as a linear least
squares problem.
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LSCM
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LSCM
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LSCM
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LSCM

LSCM Pseudocode

def LSCM(V: vertices, F: faces):
Choose two vertices (b1, b2) to pin (use vertices that are far

apart for better results).
For each triangle, convert the incident vertices to local

coordinates (should shared vertices across different triangles).
Construct the A and b matrices from (4).
Solve the least squares equation for x in (4). This will give you

back your UV coordinates in a 1D vector in the form (u1, u2, ...,
u|V |, v1, v2, ..., v|V |)
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Thank you!

Resources

LSCM

Mesh Parameterization: Theory and Practice (2008)

Mesh Parameterization Methods and Their Applications
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https://www.cs.tau.ac.il/~dcor/Graphics/papers/s2002_lscm.pdf
https://dl.acm.org/doi/pdf/10.1145/1508044.1508091
http://people.eecs.berkeley.edu/~jrs/meshpapers/ShefferPraunRose.pdf

