
ar
X

iv
:2

50
5.

04
81

3v
1

 [
cs

.G
R

]
 7

 M
ay

 2
02

5

WIR3D: Visually-Informed and Geometry-Aware 3D Shape Abstraction

Richard Liu
University of Chicago
guanzhi@uchicago.edu

Daniel Fu
University of Chicago
danielfu@uchicago.edu

Noah Tan
University of Chicago
tntan@uchicago.edu

Itai Lang
University of Chicago
itai.lang83@gmail.com

Rana Hanocka
University of Chicago

ranahanocka@uchicago.edu

Figure 1. WIR3D produces 3D shape abstractions in the form of 3D strokes. The abstractions retain the overall shape structure and capture
texture concepts (e.g. dragon scales and watermelon seeds) as well as key salient features (e.g. facial features).

Abstract

In this work we present WIR3D, a technique for abstract-
ing 3D shapes through a sparse set of visually meaningful
curves in 3D. We optimize the parameters of Bézier curves
such that they faithfully represent both the geometry and
salient visual features (e.g. texture) of the shape from ar-
bitrary viewpoints. We leverage the intermediate activa-
tions of a pre-trained foundation model (CLIP) to guide
our optimization process. We divide our optimization into
two phases: one for capturing the coarse geometry of the
shape, and the other for representing fine-grained features.
Our second phase supervision is spatially guided by a novel
localized keypoint loss. This spatial guidance enables user
control over abstracted features. We ensure fidelity to the
original surface through a neural SDF loss, which allows
the curves to be used as intuitive deformation handles. We
successfully apply our method for shape abstraction over a
broad dataset of shapes with varying complexity, geometric
structure, and texture, and demonstrate downstream appli-
cations for feature control and shape deformation.

1. Introduction
In this work, we explore whether it is possible to abstract a
3D shape into a sparse set of semantically-informed curves.

A key challenge lies in finding a sparse set of curves that
best represents the shape’s visual features. We use this term
deliberately, to encompass both the geometry and texture
features which are salient to humans. This problem can-
not be solved with surface analysis alone, which focuses on
low-level geometric contours. Our task is much broader, in
that we wish to capture high-level concepts, visually salient
geometry, and textures (e.g. Fig. 1).

Existing works have dealt with the problem of com-
puting occluding contours for non-photorealistic rendering
[5, 29, 31]. Occluding contours relies entirely on surface
analysis, which is subject to the aforementioned limitations.
Furthermore, occluding contours is a 2D representation,
while we specifically seek a view-consistent, 3D representa-
tion. Occluding contours is view-inconsistent by construc-
tion, which results in the commonly observed flickering ar-
tifact when rendering dense views of a 3D shape [21].

Our objective is to abstract visual shape features into a
sparse set of 3D strokes. We optimize the parameters of a
set of Bézier curves as our stroke representation, where the
number of curves determines the level of abstraction.

We show a motivating example in Fig. 2, where we ab-
stract a cylinder with a partial texture, and compare against
a naive solution of back-projecting 2D occluding contour
curves. The naive solution calculates a geometric contour
at each view (inset), backprojects the result to 3D curves,

https://arxiv.org/abs/2505.04813v1

Figure 2. Motivating example. Abstracting even a simple shape like a cylinder is nontrivial. Rendering the contours of the cylinder
(inset) results in a static image from every view, removing any sense of 3D volume. Backprojecting these contours into 3D results in a
dense cluster of lines spanning the body of the cylinder, which is both non-sparse and unsatisfying aesthetically. In contrast, our method
effectively abstracts the 3D geometry of the cylinder with a few strokes along with the texture.

and aggregates across all views. The naive solution only ac-
counts for the cylinder geometry in a view-dependent man-
ner, resulting in a dense body of strokes. Importantly, the
naive solution cannot handle the texture at all.

Our solution represents the cylinder volume with sparse
vertical curves. Different views of the shape are visually
distinguished, yet the cylinder’s overall geometry is consis-
tent and clear from any given view. Our method also pre-
serves the high-level pattern of the texture.

To achieve our sparse and visually salient abstraction, we
leverage spatially-conditioned semantic supervision by uti-
lizing the intermediate activations of a 2D pre-trained foun-
dation model (CLIP [47]). Our choice of model is justified
by prior work demonstrating CLIP’s strong performance in
tasks requiring high-level abstract understanding across dif-
ferent modalities [16, 18, 60]. We observe that both differ-
ent layers and architectures enable different levels of control
over geometric and texture elements of the shape and thus
split our optimization into separate geometry and texture
abstraction stages.

Our spatial conditioning comes from 3D keypoints,
which determine the weight that specific visual features are
given in our abstraction. The keypoints being in 3D ensures
their multi-view consistency and also enables fine-grained
user control over the resulting abstraction. We show in
Fig. 9 an application where users can iteratively add detail
to the abstraction through selecting keypoints correspond-
ing to salient features.

We further encourage curve adherence to the input ge-
ometry using a neural SDF loss. The surface compliance
enables an application where the curves can be used as in-
tuitive deformation handles for the shape. We demonstrate
this application in Fig. 8 and the supplemental, where our
curves’ effectiveness as control handles stems from their
alignment to semantically meaningful regions of the surface
and texture.

In summary, we present a novel technique for abstract-
ing 3D shapes through a sparse set of visually-informed
3D curves. WIR3D can abstract a myriad of shapes from
different domains with various visual concepts, geometric
structures, and textures. The abstractions are sparse yet ef-
fective and maintain high fidelity across arbitrary views.

Our novel localized weighting framework enables interac-
tive user control over the features represented in the abstrac-
tion, and our adherence to the input geometry allows for the
curves’ use as intuitive deformation handles. We encour-
age the reader to examine the supplemental material, which
contains 360-degree videos of our results and an interactive
demo of the deformation application using our optimized
curves. We plan to release the code for the method and pro-
posed applications in the near future.

2. Related Work
Shape decomposition. Shape decomposition is a long-
standing problem in 3D geometry analysis, where the goal
is to represent the shape by a set of elements, such as primi-
tives [34, 53, 57, 65], convex parts [12, 24, 39, 44], or Gaus-
sians [19, 20]. Tulsiani et al. [57] assemble 3D objects from
cuboids and obtained simple shape abstractions with consis-
tent structure. In Cvxnet [12], the authors reconstruct a 3D
shape by a collection of convex polytopes. Paschalidou et
al. [43] extend this approach by learning the decomposition
and the parts for a set of domain-specific meshes.

This line of work aims at reconstruction, whereas our
goal is abstraction. Moreover, our method does not depend
on a dataset and is not limited to a specific domain. It is
robust to shapes of arbitrary quality and complexity.

Non-photorealistic rendering. A classic problem in
graphics is identifying visual contours from 3D geometry
to create non-photorealistic renderings. A popular version
of this problem is occluding contours [1, 2, 10, 25, 36, 48],
in which contours representing visible shape regions are de-
lineated from occluded ones. In the classic setting, visi-
ble contours are exactly defined to mean the visible surface
points tangent to the view vector. Recent efforts have aimed
at improving view-consistency and alignment with profes-
sional artists [5], and some apply neural techniques [30, 31].
While such works can successfully depict visual features
based on the shape geometry, they lack 3D consistency, and
frequently suffer from flickering artifacts [21].

A recent paper [67] and its follow-up [26] introduce im-
plicit edge fields for 3D curve reconstruction from posed

Figure 3. Method overview. In the first stage, our WIR3D learns to abstract the underlying geometry of the shape. In the second stage, we
freeze the curves from the first stage and add new curves that are optimized to represent the shape’s texture.

images. These works emphasize geometric boundaries,
which is distinct from our focus on abstraction. A high-
level abstraction may reduce a shape feature to a single
stroke (e.g. Fig. 6 chair), which is not achievable by these
methods. Furthermore, these methods cannot account for
texture features which do not induce a prominent edge map.

Curve-based abstraction. Our work is in the domain of
sketch abstraction, which aims to depict a scene through
2D or 3D curve primitives. [7, 14, 22, 37, 59]. Most prior
work is based on 2D sketch abstractions [6, 13, 15, 23, 27,
42, 45, 51, 54, 59, 60], though several works have aimed to
represent 2D images through a 3D structures by projection
along orthogonal axes [22, 38, 46]. Our task is different in
that we aim to represent a single shape from all possible
viewing directions, not simply three orthogonal views.

Another line of work aims to reconstruct fabricable 3D
wire structures from different modalities, including images
[8, 32, 33], video [62], and 3D data [4, 55, 66]. These works
are constrained by the fabrication objective, and thus do not
abstract fine-grained visual details.

A final strain of literature deals with analysis of 2D
sketches of 3D structures to identify part information and
aid in user sketch generation [17, 41, 49].

A recent work proposed optimizing strokes in 3D to
match a text description or a guidance image [69]. This
work is generative in nature (e.g. text-to-3D sketch) and
does not involve spatial nor 3D inputs as in our work. 3Doo-
dle [7] presents a technique for optimizing view-dependent
and view-independent curves to represent a set of multi-
view images. Our work is orthogonal in spirit – we aim
to use a set of view-independent curves for 3D abstraction
of an input shape, and we build our framework leveraging
the geometric and semantic shape information. Notably, our
use of spatially-driven guidance and SDF loss enables our
detail control and deformation applications.

We use a variant of 3Doodle with only view-independent
curves as our main baseline and show results in Fig. 6.

3. Method
WIR3D optimizes a set of 3D cubic Bézier curves to ab-
stract a target (potentially textured) shape from all viewing
angles. The method takes as input a 3D model and optional
user-selected keypoints on the surface. When no keypoints
are provided, we automatically detect keypoints using latent
backprojection and clustering (Sec. 3.3).

3.1. Curve Representation
Our 3D strokes are modeled as a set of cubic Bézier curves
{Bi}ni=1, with control points Bi = (p0i , p

1
i , p

2
i , p

3
i), p

j
i ∈

R3. Points on the curve are sampled through polynomial
interpolation of the four control points

B(t) =(1− t)3p0 + (1− t)2tp1 (1)

+ (1− t)t2p2 + t3p3

where 0 ≤ t ≤ 1.
We make the same assumption as 3Doodle [7] that the

camera is sufficiently far from the shape such that or-
thographic and perspective projection are nearly identical.
Theorem 1 from 3Doodle thus applies to our method, which
establishes equivalence between the normal 3D Bézier
curves we optimize and the space of 2D rational Bézier
curves, generated from projecting the 3D curve control
points into 2D. Our pipeline renders the 3D Bézier curves
by first perspective-projecting the 3D control points, then
rasterizing the 2D cubic Bézier defined from the projected
control points (interpolated as in Eq. (1)). This process is
encapsulated by the “Differentiable Render” step in Fig. 3.
The differentiable rasterizer we use is DiffVG [28].

The resulting image from this projection and rasteriza-
tion process is Icurve = R({Bi}). We refer to target shape
renders as Itarget.

Target Shape Optimized Curves

2D
projection

2D
projection

downscaling

Figure 4. Localized keypoint loss. Our localized keypoints
weight the loss between the intermediate feature maps of the en-
coded curve render Icurve and the target shape render Itarget. This
weight is obtained through projecting 3D keypoints (red), followed
by a Gaussian filter to obtain the weight map Iweight. This loss fo-
cuses the optimization on visual features local to the keypoint.

3.2. Losses
We leverage the priors of 2D pretrained image encoders to
define our semantic losses. Specifically, we design special-
ized perceptual losses using CLIP [47] and LPIPS [68] to
encourage our rendered 3D strokes to visually match the
corresponding renders of the target shape.

The basic structure of our semantic loss is adapted from
CLIPasso [59], which compares both the intermediate spa-
tial activations and final global activations between the ren-
dered strokes and the target shape:

Lsemantic =λfcdist(CLIP(Icurve),CLIP(Itarget)) (2)

+
∑
l=3,4

||CLIPl(Icurve)− CLIPl(Itarget)||22

where dist(·, ·) measures cosine similarity, CLIP is the
global CLIP encoding, and CLIPl is the layer l activation.

We find this semantic loss, however, to be lacking when
it comes to representing fine details, including textures.
Thus, we introduce a spatial weighting framework, which
directs the optimization towards specific visual features.

Localized Keypoint Loss. Our spatial weighting is based
on previous work that establishes the spatial correlation be-
tween CLIP’s intermediate activations and the input image.
[50]. Features of interest can be emphasized in these in-
termediate layers by identifying their location in the render
and tracing the correspondence to the downsampled feature
maps, hence localizing the features in the feature maps.

We assume as optional input user-defined 3D keypoints.
If no input keypoints are given then our method automat-
ically detects keypoints, as described in Sec. 3.3 and the
supplemental. These keypoints should indicate salient vi-
sual features on the input shape or texture, and we leverage
that information to guide abstraction of the specific features.

For every sampled view during optimization, we project
the keypoints to the same views and identify their positions
in the corresponding renders. Once we have the keypoint
locations in the rendered image, we construct a weight map
at the same resolution as the image based on a Gaussian
dropoff from the keypoint center. Specifically, we construct
the weight image Iweight such that

Iweight(x, y) = 1 +
∑
p

e
−||(x,y)−p||2

2σ2 (3)

where x, y ∈ [0, 1] index the normalized image pixels, and
p ∈ [0, 1] is the keypoint projected to normalized coordi-
nates. We add 1 to the weights so that regions far from
the keypoints still contribute to the loss. We use these con-
structed weight maps to weight our semantic loss Eq. (2)
for each render, such that each L2 term in the intermedi-
ate layer losses ||CLIPl(Icurve) − CLIPl(Itarget)||22 becomes
||Iweight ·(CLIPl(Icurve)−CLIPl(Itarget))||22. The weight map
is downsampled to match the resolution of each intermedi-
ate feature map. We visualize this process in Fig. 4.

We maintain a z-buffer for the shape renders, such that if
a keypoint’s projected depth is higher than the shape depth,
then the keypoint is occluded by the surface from that view
and does not contribute to the weight image. This prevents
keypoints from being attributed to incorrect surface regions.

To provide additional structural constraints, we include
an LPIPS loss term [68]. LPIPS is a popular perceptual loss
function which is known to be sensitive to geometric layouts
[7]. The final localized keypoint loss becomes:

Llocal = λfcĪweightdist(CLIP(Icurve),CLIP(Itarget)) (4)

+
∑
l=3,4

||Iweight · (CLIPl(Icurve)− CLIPl(Itarget))||22

+ λlpipsLPIPS(Icurve, Itarget)

where Īweight indicates the mean-pooled weights.
A natural question is how sensitive this loss is to poor

keypoint selection. We show an example optimization using
our localization loss with randomly distributed keypoints in
Fig. 18 the supplemental, and show the result is not much
different than optimizing without any keypoints (Lsemantic).
We also ablate on Llocal when keypoints identify salient fea-
tures in Fig. 17, and show the localization weighting is
critical for abstracting fine-grained features. This demon-
strates that Llocal is a strict improvement over Lsemantic in
cases where the keypoints are meaningful, and otherwise
produces robust results on par with Lsemantic.

On top of the localized keypoint loss, we include SDF
and view regularization losses to ensure the stroke abstrac-
tion is represented in all possible views.

SDF Regularization. To encourage adherence of the
curves to the target shape geometry, we use a loss based

on the shape’s Signed Distance Field (SDF). We fit an MLP
Φ on the shape’s SDF (Unsigned Distance Field in the case
of shapes with boundaries) to obtain a neural SDF. During
stroke optimization, we densely sample each 3D curve and
query their SDF values using the neural SDF, penalizing
values outside of the zero level set:

LSDF =
1

n · k

n∑
i=1

s∑
k=1

|ϕ(Bi(tk)| (5)

where tk ∈ [0, 1] are random samples along the Bézier
curve for s total samples. This loss helps to anchor ab-
stracted features to the surface implied by the curve set.

View Regularization. We further regularize the abstrac-
tion by enforcing that all curves are visible from all sampled
viewing angles. This forces all curves to participate in the
shape abstraction from every angle, which is necessary for
a proper 3D abstraction. With P indicating the perspective
projection of the Bézier curve control keypoints, we have:

Lndc =

n∑
i=1

2∑
j=1

ReLU(P(Bi)j − 1) + ReLU(−P(Bi)j),

(6)

where ReLU is a Rectified Linear Unit.

3.3. Two-Stage Optimization
In our experiments we find that different CLIP architectures
and layer combinations are sensitive to geometry or seman-
tic shape features. To exploit this, we construct a two-stage
training pipeline, in which the first stage is optimizes for
the shape geometry and the second stage abstracts the shape
texture, where each stage leverages different CLIP architec-
tures and semantic losses.

Keypoint Initialization. When keypoints are not in-
cluded in the input, we automatically identify keypoints of
interest on the shape’s surface using the 2D to 3D feature
back-projection method introduced in Backto3D [64] with
KMeans clustering [35]. See supplemental for more details.

Geometry Abstraction. During stage I optimization, the
Bézier curves are initialized using furthest point sampling,
with the control points drawn from small Gaussians around
each sampled point. These curves are optimized towards the
shape geometry with a combination of our original (non-
localized) semantic (2), SDF (5), and NDC (6) losses, su-
pervised with Freestyle renders (see supplemental) I free

target of
the target shape. The stage I loss is:

LI =Lsemantic(Icurve, I
free
target) + 0.1 · LSDF + Lndc({Bi}).

Texture Abstraction. In our second stage, we freeze the
set of geometry curves optimized in the first stage and ini-
tialize a new set of curves in the same way as the first stage,
using furthest distance sampling. These curves are then op-
timized to represent the semantic texture of the shape us-
ing our localized keypoint loss (4), SDF (5), and NDC (6)
losses, supervised with surface (potentially textured) ren-
ders of the shape Isurface

target . The stage II loss is:

LII =Llocal(Icurve, I
surface
target) + LSDF + Lndc({Bi}).

We use CLIP architectures RN101 and RN50x16 for
Lsemantic and Llocal, respectively. We’ve found empirically
that RN101 tends to be more sensitive to geometric struc-
tures, whereas RN50x16 is more sensitive to higher-level
visual concepts.

4. Experiments
We evaluate WIR3D across a wide variety of shapes and
demonstrate multi-view fidelity and abstraction control in
Sec. 4.1. We compare WIR3D quantitatively and qualita-
tively to relevant baselines in Sec. 4.2. Finally, Sec. 4.4
showcases the interactive feature control and shape defor-
mation applications enabled by our method.

The shapes in our experiments are aggregated from
COSEG [58], the Meta Digital Twin Catalog [40], and
Keenan Crane’s 3D model repository [9]. WIR3D is robust
to meshes with varying topology, complexity and quality.

For all experiments, we randomly sample views span-
ning 0 to 30 degrees elevation and 0 to 360 degrees azimuth.

4.1. Qualitative Results
Shape Abstractions. Fig. 5 shows 3D stroke abstrac-
tions generated by WIR3D for textured shapes.WIR3D
also successfully abstracts textures and captures structured
patterns, such as watermelon seeds (Row 1) and spots
(Rows 5/6 Spot/Bob), as well as facial features (Rows 5/7
Spot/Nefertiti). We also show results on untextured shapes
in Fig. 13 in the supplemental. Our method can represent
complex geometries, such as the spiral column band (Row
6), the parallel rows of spines on the stegosaurus (Row 5).

Abstraction Control. Our method automatically adapts
the level of abstraction based on the number of strokes be-
ing optimized. Fig. 7 shows that adding more strokes adds
progressvely more detail to the abstraction, and our method
produces high quality abstractions across all levels.

Multi-View Fidelity. Because our curves are defined in
3D, our abstraction is view-consistent by construction.
However, this does not guarantee the curves plausibly rep-
resent the shape from arbitrary views. Fig. 14 in the supple-
mental shows that our abstraction faithfully represents the
shape for densely sampled views in a 360 range.

Figure 5. Qualitative results for textured objects. We show
WIR3D’s the result on a collection of textured meshes.

4.2. Baseline Comparisons
The baselines against which we compare are NEF [67] and
3Doodle [7]. For both methods, we use the publicly avail-
able repositories published by the respective authors. We
standardize the sampled views during optimization, and use
the default hyperparameters otherwise. 3Doodle originally
initializes its curves using SFM, but given the method’s sen-
sitivity to poor initialization, we standardize initialization to
the same furthest point samples as our method, and find that
they perform better than SFM.

NEF often struggles to fit reasonable point clouds, which
results in meaningless curves. We show qualitative compar-
ison to NEF in the supplementary, where we train NEF on
a set of viewpoints optimized for the method.

Qualitative Comparison. We show qualitative compar-
isons with the 3Doodle baseline for both untextured and
textured shapes in Fig. 6. Our method consistently captures
the global geometry, whereas 3Doodle struggles in a low
signal context such as untextured shapes (missing back left
chair leg, flattened bird geometry). Furthermore, 3Doodle
is consistently insensitive to facial structures, whereas our
localized weighting ensures that we abstract them (rows 2,
6). Similarly, we are able to represent fine-grained texture
structures as high-level visual motifs, such as the dragon
scales (row 3).

Figure 6. Qualitative comparison. We compare a subset of our
textured and untextured results against 3Doodle. 3Doodle pro-
duces reasonable abstractions that capture the overall structure but
lack precision when it comes to the feature details and specific ge-
ometric structures.

Quantitative Comparison. We assess the quality of the
stroke abstractions using three perceptual metrics and one
geometric metric, reported in Tab. 1. The first two, LPIPS
[68] and CLIPimg [61], are the same metrics reported by
3Doodle. Our method outperforms 3Doodle on both met-
rics, though numerically our CLIPimg is not much higher.
We note that CLIP has been shown to be insensitive to large
visual differences, as systematized in [56, 63]. We further
illustrate this point in Fig. 12 (supplemental), where we
show that a randomly oriented cow outline obtains a sim-
ilar CLIPimg score as the edge map [3] of the ground-truth
render. Thus, the numerical difference in CLIPimg is an un-
reliable indicator of the difference in visual quality.

This motivates our user perceptual study (N = 96),
which takes all the results from our dataset and compares
our Wir3D optimized strokes against the 3Doodle opti-
mized strokes. Specifically, we display rotating gifs of both
results side by side, along with a rotating gif of the target
shape, and ask users to rank the 3D strokes based on how
well they represent the target shape. We collected responses
from 96 users and compute the frequency our method is
ranked higher than 3Doodle. Our curves are ranked as bet-

Figure 7. Abstraction control. The level of abstraction is implic-
itly controlled by the number of curves. As the curve count grows,
the abstraction captures more fine details.

ter shape abstractions 88% of the time. Screenshots from
the study are shown in the supplemental.

Our final metric, “Coverage”, is a geometric metric that
quantifies how well the stroke abstractions cover the orig-
inal surface. We aim to abstract an input 3D model, so fi-
delity to the input geometry is key to abstraction quality.
We measure coverage by sampling 100k points over the in-
put surface and computing the 1-direction Chamfer distance
from the surface points to the optimized strokes. This metric
evaluates whether each point on the surface has a curve rea-
sonably close to it. Adequate coverage of a shape’s geom-
etry is important for downstream applications which make
use of the surface correspondence, such as the deformation
application shown in Fig. 8. Our method significantly out-
performs the baselines in terms of coverage, with a >2x re-
duction in coverage distance relative to 3Doodle, and >4x
reduction relative to NEF.

Method LPIPS (↓) CLIPimg (↑) User Rank (↑) Coverage (↓)

NEF 0.313 0.86 - 0.056
3Doodle 0.246 0.900 0.12 0.020
WIR3D (Ours) 0.227 0.909 0.88 0.008

Table 1. We compare between WIR3D, 3Doodle [7], and NEF
[67] through 3 perceptual metrics computed over novel views of
the curves and the target shape. “LPIPS” measures the average
LPIPS similarity score using AlexNet. “CLIPimg” measures the
average cosine similarity scaled between (0,1) using the ViT/B-32
model. “User Rank” measures the percentage of user responses
that prefer one method over the other (N = 96). We also compute
a geometric metric “Coverage”, which measures the 1-direction
Chamfer distance between the curves and the target 3D surface.

4.3. Ablations
We perform a thorough ablation study demonstrating the
importance of our design choices in WIR3D. Figures for

each ablation are shown in the supplemental. We report the
ablation metrics in Tab. 2. Removing the CLIP intermedi-
ate layers from our supervision results in the highest reduc-
tion in quality, followed by removing the stage 1 training.
Removing the localized keypoint loss also results in some
reduction in the metrics, but as discussed in Sec. 4.2, per-
ceptual metrics may not be sensitive to the fine visual detail
this loss is designed to capture. Removing the SDF loss
results in worse geometric coverage, as expected.

Stage 1. Stage 1 training ensures the full geometry is rep-
resented from every view. Removing this stage results in
the optimization biasing towards certain views and creating
an overall “flattened” effect of the geometry (Fig. 15).

No intermediate CLIP layers. As established in [59],
the intermediate CLIP layers are essential for capturing
the geometric structure of the target. Optimizing on only
the fully-connected CLIP output results in abstractions that
have some semantic correspondence with the target but the
specific geometric features are noisy (Fig. 16).

Localized keypoint loss. As discussed in Sec. 3.2, our
method without keypoints produces reasonable abstraction
but lacks fine-grained detail (Fig. 17). We also show in
Fig. 18 that initialization with random keypoints is no worse
than running our method without keypoints. Hence, we are
robust to poor keypoint choice.

SDF loss. Our SDF loss prevents semantic features from
pulling off the surface implied by the geometry curves. It
also prevents occasional small floaters (Fig. 19).

Method LPIPS (↓) CLIPimg (↑) Coverage (↓)

WIR3D 0.227 0.909 0.008
No SDF 0.229 0.904 0.012
No Local 0.233 0.905 0.009
w/o Stage 1 0.248 0.900 0.016
No CLIP Layers 0.294 0.891 0.012

Table 2. Ablation Quantitative Metrics. “WIR3D” is our full
method. “w/o Stage 1” is the Stage 1 ablation. “No CLIP layers”
is the ablation on CLIP intermediate layer activations. “No SDF”
is the ablation on the SDF loss. “No Local” is the ablation on the
localized keypoint loss.

4.4. Applications
We demonstrate two applications enabled by our 3D curve
representation. The first is user-interactive feature control.
Our localized weighting framework allows for user control
over which features are represented in the abstraction. After

Figure 8. Deformation application. The curve abstractions make for intuitive control handles for shape deformation. The curves wrap
salient features such that deformations are transferred smoothly through a simple L2 distance skinning procedure.

Figure 9. Keypoint control. Our spatial weighting framework
enables user-interactive detail refinement.

optimization, the user can further refine the curves by se-
lecting additional keypoints, and new curves can be quickly
optimized to add detail to the feature of interest. We demon-
strate this refinement procedure in Fig. 9, where keypoints
can be used to make specific structures more explicit (e.g.
wheels on the plane) or to add texture detail (e.g. nefertiti
headband). The refinement is rapid, and is completed in a
few hundred iterations, or around a minute.

The curves’ adherence to the input geometry makes them
intuitive deformation handles. We show in Fig. 8 exam-
ples of interactive deformation using the curves, where Eu-
clidean distance-based skinning weights are used to map de-

formations from the curves to the shape surface. The curves
naturally wrap salient features so that the deformations are
smoothly transferred, and relevant parts are easily manipu-
lated. More detail and videos are in the supplemental.

5. Conclusion
WIR3D is a method for 3D model abstraction into sparse
strokes, parameterized as cubic Bézier curves in 3D. We in-
troduce a novel localized keypoint loss, which allows the
abstractions to represent fine-grained geometry and texture
details. This localized weighting framework enables user
control over the local abstraction detail through interactive
keypoint selection and detail refinement. Our method is ro-
bust across models of arbitrary topology and quality. We en-
courage the 3D curves to maintain close correspondence to
the original surface, which can enable intuitive shape edit-
ing applications such as curve-based deformation.

Limitations. The quality of WIR3D is primarily lim-
ited by the quality of the detected/input keypoints. In cases
where the keypoints are located in non-semantic regions,
our abstraction will perform on par with the result without
localized weighting. Another limitation is the preprocessing
required for our method. Fitting a neural SDF, running our
automatic keypoint algorithm, and generating the freestyle
renders may take a lot of time depending on the complex-
ity of the input model. For instance, the total preprocess-
ing time for our Nefertiti model (100,000 faces) is around 2
hours. Future work could look into making this preprocess-
ing more efficient or removing it entirely, and producing
better algorithms for semantic keypoint detection.

References
[1] Edmond Boyer and Marie-Odile Berger. 3D Surface Recon-

struction Using Occluding Contours. International Journal
of Computer Vision, 22(3):219–233, 1997.

[2] Pierre Bénard and Aaron Hertzmann. Line Drawings from

3D Models: A Tutorial. Foundations and Trends® in Com-
puter Graphics and Vision, 11(1-2):1–159, 2019.

[3] John Canny. A Computational Approach to Edge Detection.
IEEE Transactions on Pattern Analysis and Machine Intelli-
gence, PAMI-8(6):679–698, 1986. Conference Name: IEEE
Transactions on Pattern Analysis and Machine Intelligence.

[4] Li Cao, Yike Xu, Jianwei Guo, and Xiaoping Liu. Wire-
frameNet: A novel method for wireframe generation from
point cloud. Computers & Graphics, 115:226–235, 2023.

[5] Ryan Capouellez, Jiacheng Dai, Aaron Hertzmann, and De-
nis Zorin. Algebraic Smooth Occluding Contours. In
ACM SIGGRAPH 2023 Conference Proceedings, pages 1–
10, 2023.

[6] Hong Chen, Ying-Qing Xu, Heung-Yeung Shum, Song-
Chun Zhu, and Nan-Ning Zheng. Example-based facial
sketch generation with non-parametric sampling. In Pro-
ceedings Eighth IEEE International Conference on Com-
puter Vision. ICCV 2001, pages 433–438 vol.2, 2001.

[7] Changwoon Choi, Jaeah Lee, Jaesik Park, and Young Min
Kim. 3Doodle: Compact Abstraction of Objects with 3D
Strokes. ACM Transactions on Graphics (TOG), 43(4):1–13,
2024.

[8] Hyelim Choi, Minji Lee, Jiseock Kang, and Dongjun Lee.
Online 3D Edge Reconstruction of Wiry Structures From
Monocular Image Sequences. IEEE Robotics and Automa-
tion Letters, 8(11):7479–7486, 2023. Conference Name:
IEEE Robotics and Automation Letters.

[9] Keenan Crane, Ulrich Pinkall, and Peter Schröder. Robust
fairing via conformal curvature flow. ACM Transactions on
Graphics (TOG), 32(4):1–10, 2013.

[10] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz,
and Anthony Santella. Suggestive contours for conveying
shape. ACM Trans. Graph., 22(3):848–855, 2003.

[11] Doug DeCarlo, Adam Finkelstein, Szymon Rusinkiewicz,
and Anthony Santella. Suggestive Contours for Conveying
Shape. In Seminal Graphics Papers: Pushing the Bound-
aries, Volume 2, pages 401–408. ACM New York, NY, USA,
2023.

[12] Boyang Deng, Kyle Genova, Soroosh Yazdani, Sofien
Bouaziz, Geoffrey Hinton, and Andrea Tagliasacchi. Cvxnet:
Learnable Convex Decomposition. In Proceedings of
the IEEE/CVF conference on computer vision and pattern
recognition (CVPR), pages 31–44, 2020.

[13] Kevin Frans, Lisa Soros, and Olaf Witkowski. CLIPDraw:
Exploring Text-to-Drawing Synthesis through Language-
Image Encoders. Advances in Neural Information Process-
ing Systems, 35:5207–5218, 2022.

[14] Ran Gal, Olga Sorkine, Niloy Mitra, and Daniel Cohen-Or.
iWIRES: An analyze-and-edit approach to shape manipula-
tion. ACM Transactions on Graphics (proceedings of ACM
SIGGRAPH), 28(3):33:1–33:10, 2009.

[15] Rinon Gal, Yael Vinker, Yuval Alaluf, Amit Bermano,
Daniel Cohen-Or, Ariel Shamir, and Gal Chechik. Breath-
ing Life Into Sketches Using Text-to-Video Priors. In
2024 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition (CVPR), pages 4325–4336, Seattle, WA,
USA, 2024. IEEE.

[16] Huy Ha and Shuran Song. Semantic Abstraction: Open-
World 3D Scene Understanding from 2D Vision-Language
Models, 2022. arXiv:2207.11514 [cs].

[17] James W. Hennessey, Han Liu, Holger Winnemöller, Mira
Dontcheva, and Niloy J. Mitra. How2sketch: Generating
easy-to-follow tutorials for sketching 3d objects. Symposium
on Interactive 3D Graphics and Games, 2017.

[18] Pablo Hernandez-Camara and Jorge Vila-Tomas. MEASUR-
ING HUMAN-CLIP ALIGNMENT AT DIFFERENT AB-
STRACTION LEVELS. 2024.

[19] Amir Hertz, Rana Hanocka, Raja Giryes, and Daniel Cohen-
Or. PointGMM: a Neural GMM Network for Point Clouds.
In Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 12054–
12063, 2020.

[20] Amir Hertz, Or Perel, Raja Giryes, Olga Sorkine-Hornung,
and Daniel Cohen-Or. SPAGHETTI: Editing Implicit Shapes
Through Part Aware Generation. ACM Transactions on
Graphics (TOG), 41(4):1–20, 2022.

[21] Aaron Hertzmann. New insights in smooth occluding
contours for nonphotorealistic rendering. IEEE Computer
Graphics and Applications, 44(1):76–85, 2024.

[22] Kai-Wen Hsiao, Jia-Bin Huang, and Hung-Kuo Chu. Multi-
view Wire Art. ACM Transactions on Graphics (TOG), 37
(6):1–11, 2018.

[23] Felix Hähnlein, Changjian Li, Niloy J. Mitra, and Adrien
Bousseau. CAD2Sketch: Generating Concept Sketches from
CAD Sequences. ACM Transactions on Graphics, 41(6):1–
18, 2022.

[24] R Kenny Jones, Aalia Habib, and Daniel Ritchie. SHRED:
3D Shape Region Decomposition with Learned Local Oper-
ations. ACM Transactions on Graphics (TOG), 41(6):1–11,
2022.

[25] Jan J Koenderink. What does the occluding contour tell us
about solid shape? Perception, 13(3):321–330, 1984.

[26] Lei Li, Songyou Peng, Zehao Yu, Shaohui Liu, Remi Pautrat,
Xiaochuan Yin, and Marc Pollefeys. 3D Neural Edge Recon-
struction. In 2024 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR), pages 21219–21229,
Seattle, WA, USA, 2024. IEEE.

[27] Mengtian Li, Zhe Lin, Radomı́r Mˇ ech, , Ersin Yumer, and
Deva Ramanan. Photo-sketching: Inferring contour draw-
ings from images. WACV, 2019.

[28] Tzu-Mao Li, Michal Lukáč, Gharbi Michaël, and Jonathan
Ragan-Kelley. Differentiable vector graphics rasterization
for editing and learning. ACM Trans. Graph. (Proc. SIG-
GRAPH Asia), 39(6):193:1–193:15, 2020.

[29] Chenxi Liu, Pierre Bénard, Aaron Hertzmann, and Shayan
Hoshyari. ConTesse: Accurate Occluding Contours for Sub-
division Surfaces. ACM Transactions on Graphics, 42(1):
1–16, 2023.

[30] Difan Liu, Mohamed Nabail, Aaron Hertzmann, and Evan-
gelos Kalogerakis. Neural Contours: Learning to Draw
Lines from 3D Shapes. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 5428–5436, 2020.

[31] Difan Liu, Matthew Fisher, Aaron Hertzmann, and Evan-
gelos Kalogerakis. Neural Strokes: Stylized Line Draw-
ing of 3d Shapes. In Proceedings of the IEEE/CVF In-
ternational Conference on Computer Vision (CVPR), pages
14204–14213, 2021.

[32] Lingjie Liu, Duygu Ceylan, Cheng Lin, Wenping Wang, and
Niloy J. Mitra. Image-based reconstruction of wire art. ACM
SIGGRAPH 2017, 2017.

[33] Lingjie Liu, Nenglun Chen, Duygu Ceylan, Christian
Theobalt, Wenping Wang, and Niloy J. Mitra. Curvefusion:
Reconstructing thin structures from rgbd sequences. ACM
Trans. Graph., 37(6):218:1–218:12, 2018.

[34] Weixiao Liu, Yuwei Wu, Sipu Ruan, and Gregory S
Chirikjian. Marching-Primitives: Shape Abstraction from
Signed Distance Function. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 8771–8780, 2023.

[35] Stuart Lloyd. Least squares quantization in pcm. IEEE trans-
actions on information theory, 28(2):129–137, 1982.

[36] David Marr. Analysis of Occluding Contour. Proceedings of
the Royal Society of London. Series B. Biological Sciences,
197(1129):441–475, 1977.

[37] Ravish Mehra, Qingnan Zhou, Jeremy Long, Alla Sheffer,
Amy Gooch, and Niloy J Mitra. Abstraction of man-made
shapes. In ACM SIGGRAPH Asia 2009 papers, pages 1–10.
ACM New York, NY, USA, 2009.

[38] Niloy J Mitra and Mark Pauly. Shadow Art. ACM Transac-
tions on Graphics, 28(5):156–1, 2009.

[39] Alessandro Muntoni, Marco Livesu, Riccardo Scateni, Alla
Sheffer, and Daniele Panozzo. Axis-Aligned Height-Field
Block Decomposition of 3D Shapes. ACM Transactions on
Graphics (TOG), 37(5):1–15, 2018.

[40] Xiaqing Pan, Nicholas Charron, Yongqian Yang, Scott Pe-
ters, Thomas Whelan, Chen Kong, Omkar Parkhi, Richard
Newcombe, and Carl Yuheng Ren. Aria digital twin: A
new benchmark dataset for egocentric 3d machine percep-
tion, 2023.

[41] Karran Pandey, Fanny Chevalier, and Karan Singh.
Juxtaform: interactive visual summarization for exploratory
shape design. ACM Trans. Graph., 42(4):52:1–52:14, 2023.

[42] Wamiq Para, Shariq Bhat, Paul Guerrero, Tom Kelly, Niloy
Mitra, Leonidas J Guibas, and Peter Wonka. SketchGen:
Generating Constrained CAD Sketches. In Advances in Neu-
ral Information Processing Systems, pages 5077–5088. Cur-
ran Associates, Inc., 2021.

[43] Despoina Paschalidou, Angelos Katharopoulos, Andreas
Geiger, and Sanja Fidler. Neural Parts: Learning Expres-
sive 3D Shape Abstractions with Invertible Neural Networks.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pages 3204–3215,
2021.

[44] Ofek Pearl, Itai Lang, Yuhua Hu, Raymond A Yeh, and Rana
Hanocka. GeoCode: Interpretable Shape Programs. arXiv
preprint arXiv:2212.11715, 2022.

[45] Yonggang Qi, Guoyao Su, Pinaki Nath Chowdhury,
Mingkang Li, and Yi-Zhe Song. SketchLattice: Latticed
Representation for Sketch Manipulation. In 2021 IEEE/CVF

International Conference on Computer Vision (ICCV), pages
933–941, Montreal, QC, Canada, 2021. IEEE.

[46] Zhiyu Qu, Lan Yang, Honggang Zhang, Tao Xiang, Kaiyue
Pang, and Yi-Zhe Song. Wired Perspectives: Multi-View
Wire Art Embraces Generative AI. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 6149–6158, 2024.

[47] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learn-
ing Transferable Visual Models from Natural Language su-
pervision. In International Conference on Machine Learning
(ICML), pages 8748–8763. PMLR, 2021.

[48] W Brent Seales and Charles R Dyer. Viewpoint from Oc-
cluding Contour. CVGIP: Image Understanding, 55(2):198–
211, 1992.

[49] Tianjia Shao, Wilmot Li, Kun Zhou, Weiwei Xu, Baining
Guo, and Niloy J. Mitra. Interpreting concept sketches. ACM
Transactions on Graphics, 32(4), 2013.

[50] Gil Shomron and Uri Weiser. Spatial correlation and value
prediction in convolutional neural networks. IEEE Comput.
Archit. Lett., 18(1):10–13, 2019.

[51] Jifei Song, Kaiyue Pang, Yi-Zhe Song, Tao Xiang, and Tim-
othy M. Hospedales. Learning to Sketch with Shortcut Cycle
Consistency. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 801–810, Salt Lake
City, UT, 2018. IEEE.

[52] Anjana Susarla, Ram Gopal, Jason Bennett Thatcher, and
Suprateek Sarker. The Janus Effect of Generative AI: Chart-
ing the Path for Responsible Conduct of Scholarly Activities
in Information Systems. Information Systems Research, 34
(2):399–408, 2023. Publisher: INFORMS.

[53] Jean-Marc Thiery, Émilie Guy, and Tamy Boubekeur.
Sphere-Meshes: shape approximation using spherical
quadric error metrics. ACM Transactions on Graphics, 32
(6):1–12, 2013.

[54] Yingtao Tian and David Ha. Modern Evolution Strate-
gies for Creativity: Fitting Concrete Images and Abstract
Concepts. In Artificial Intelligence in Music, Sound, Art
and Design: 11th International Conference, EvoMUSART
2022, Held as Part of EvoStar 2022, Madrid, Spain, April
20–22, 2022, Proceedings, pages 275–291, Berlin, Heidel-
berg, 2022. Springer-Verlag.

[55] Kenji Tojo, Ariel Shamir, Bernd Bickel, and Nobuyuki
Umetani. Fabricable 3D Wire Art. In Special Interest Group
on Computer Graphics and Interactive Techniques Confer-
ence Conference Papers ’24, pages 1–11, Denver CO USA,
2024. ACM.

[56] Shengbang Tong, Zhuang Liu, Yuexiang Zhai, Yi Ma, Yann
LeCun, and Saining Xie. Eyes Wide Shut? Explor-
ing the Visual Shortcomings of Multimodal LLMs, 2024.
arXiv:2401.06209 [cs].

[57] Shubham Tulsiani, Hao Su, Leonidas J Guibas, Alexei A
Efros, and Jitendra Malik. Learning Shape Abstractions by
Assembling Volumetric Primitives. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, pages 2635–2643, 2017.

[58] Oliver van Kaick, Andrea Tagliasacchi, Oana Sidi,
Hao Zhang, Daniel Cohen-Or, Lior Wolf, and Ghassan
Hamarneh. Prior knowledge for part correspondence. Com-
puter Graphics Forum, 30(2):553–562, 2011.

[59] Yael Vinker, Ehsan Pajouheshgar, Jessica Y Bo, Ro-
man Christian Bachmann, Amit Haim Bermano, Daniel
Cohen-Or, Amir Zamir, and Ariel Shamir. CLIPasso:
Semantically-Aware Object Sketching. ACM Transactions
on Graphics (TOG), 41(4):1–11, 2022.

[60] Yael Vinker, Yuval Alaluf, Daniel Cohen-Or, and Ariel
Shamir. CLIPascene: Scene Sketching with Different Types
and Levels of Abstraction. In 2023 IEEE/CVF International
Conference on Computer Vision (ICCV), pages 4123–4133,
Paris, France, 2023. IEEE.

[61] Jianyi Wang, Kelvin CK Chan, and Chen Change Loy. Ex-
ploring clip for assessing the look and feel of images. In
AAAI, 2023.

[62] Peng Wang, Lingjie Liu, Nenglun Chen, Hung-Kuo Chu,
Christian Theobalt, and Wenping Wang. Vid2Curve: simul-
taneous camera motion estimation and thin structure recon-
struction from an RGB video. ACM Trans. Graph., 39(4):
132:132:1–132:132:12, 2020.

[63] Wenxuan Wang, Quan Sun, Fan Zhang, Yepeng Tang, Jing
Liu, and Xinlong Wang. Diffusion Feedback Helps CLIP
See Better, 2024. arXiv:2407.20171 [cs].

[64] Thomas Wimmer, Peter Wonka, and Maks Ovsjanikov. Back
to 3d: Few-shot 3d keypoint detection with back-projected
2d features. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2024.

[65] Yuwei Wu, Weixiao Liu, Sipu Ruan, and Gregory S
Chirikjian. Primitive-based Shape Abstraction via Nonpara-
metric Bayesian Inference. In European Conference on
Computer Vision (ECCV), pages 479–495. Springer, 2022.

[66] Zhijin Yang, Pengfei Xu, Hongbo Fu, and Hui Huang. Wire-
Room: model-guided explorative design of abstract wire art.
ACM Transactions on Graphics, 40(4):1–13, 2021.

[67] Yunfan Ye, Renjiao Yi, Zhirui Gao, Chenyang Zhu, Zhiping
Cai, and Kai Xu. NEF: Neural Edge Fields for 3D Parametric
Curve Reconstruction from Multi-view Images. In Proceed-
ings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 8486–8495, 2023.

[68] Richard Zhang, Phillip Isola, Alexei A Efros, Eli Shechtman,
and Oliver Wang. The unreasonable effectiveness of deep
features as a perceptual metric. In CVPR, 2018.

[69] Yibo Zhang, Lihong Wang, Changqing Zou, Tieru Wu,
and Rui Ma. Diff3DS: Generating View-Consistent 3D
Sketch via Differentiable Curve Rendering. arXiv preprint
arXiv:2405.15305, 2024.

WIR3D: Visually-Informed and Geometry-Aware 3D Shape Abstraction

Supplementary Material

A. Data Preprocessing

We leverage the input surface not just in our SDF regulariza-
tion, but also in generating supervision data specialized for
our task. Specifically, we generate stylized Freestyle ren-
ders which isolate the key geometric features of a shape for
our stage I optimization. In the case where a user does not
supply keypoints, we leverage the priors of 2D foundation
models to automatically detect keypoints which correspond
to salient shape features.

Freestyle Rendering Standard opaque surface renders
are not ideal for our curve representation, which are non-
occlusive by construction. Optimizing with these surface
renders can result in under-detailed abstractions or particu-
lar Janusing artifacts [52], where curves positioned on the
opposite side of the viewed surface end up being optimized
for the wrong side. Furthermore, when the shape is untex-
tured, surface renders may be poor at exhibiting key geo-
metric structures.

To resolve this, we render the shapes in a stylized fash-
ion to allow for each view to isolate the shape geometric
structure and take into account the occluded shape features.
Specifically, we render the shapes using the Freestyle ren-
dering engine [11] in Blender and render the shape in terms
of its view-dependent contours, without accounting for oc-
clusions. These Freestyle renders are purely based on the
shape geometry and do not take into account any textures.
Thus, these renders are appropriate for the first stage of our
optimization (Sec. 3.3) where we focus on capturing the
shape geometry.

Keypoint Detection. When keypoints are not included in
the input, we automatically identify keypoints of interest on
the shape’s surface using the 3D feature extraction method
developed in Backto3D [64]. This method back-projects
2D image features to a 3D shape using a simple averaging
scheme. Our assumption, following Backto3D, is that these
backprojected features contain meaningful information of
the shape’s salient visual features, and thus can be leveraged
for identifying keypoints relevant to those features.

Specifically, we render views of the 3D model and en-
code them using CLIP RN50x16, back-project the pixel-
level latent features to shape vertices, and average the fea-
tures among duplicate vertices captured in different views.

Once we have 3D features on the shape, we apply
KMeans clustering over these features [35] and obtain k la-
tent clusters, where k is the number of keypoints we wish

Figure 10. NEF qualitative comparison. We show NEF results
on the same models we compare to 3Doodle in the main paper.
NEF is specialized for simple manufactured CAD shapes, so it
struggles to fit edges to more complex surfaces. This limitation
was similarly observed in 3Doodle.

to obtain. We interpret these clusters as aggregating sur-
face points with similar visual content. We identify the
vertex whose features are closest to the cluster centers as
keypoints, since these vertices are most likely to represent
the key visual feature associated with the cluster. We make
k the number of curves we initialize in stage 2 of our op-
timization, though this number can be adjusted depending
the number of salient elements on the shape.

B. Neural Edge Field Comparison
We show a qualitative comparison to NEF in Fig. 10, using
the same models we show in the main paper for 3Doodle,
except for the models which NEF fails to produce meaning-
ful point clouds for. Though NEF can capture the rough
silhouette of the target shape, the method is specialized
for simple manufactured surfaces with sharp corners, so it
struggles to place curves meaningfully on more complex
surfaces. This results in a messier and harder-to-identify
abstraction.

Figure 11. Freestyle render ablation. Running our method with-
out freestyle renders still produces a reasonable abstraction, but
key geometric features, such as the wheels of the car, may be
missed due to the lack of visual content from the surface renders.

Figure 12. Perceptual metrics reliability. We show the unreli-
ability of CLIPimg in evaluating semantic similarity of curve ab-
straction to a target. We show for a given view, our stroke abstrac-
tion, 3Doodle’s, the edge map for the view extracted using Canny
edge detection [3], and a random image of a cow stencil obtained
from Google. Note that though the Canny edge map captures the
entire geometric structure and textures of the shape, its CLIPimg

score is shockingly lower than that of the stencil image. The vast
difference in the two images also demonstrates how small differ-
ences in score can indicate major differences in quality.

C. Perceptual Metric Details.
The LPIPS metric is based on an AlexNet architecture
trained for image classification fine-tuned with a linear layer
on an annotated perceptual similarity dataset. Notably, we
use the VGG variant of LPIPS for optimization, which is a
commonly performed split between optimization and eval-
uation, and is similarly done in 3Doodle.

CLIPimg is computed by encoding both the stroke ren-
ders and shape renders through a CLIP ViT/B-32 model,
computing the cosine similarity, and scaling the score to [0-
1]. Note that we only use the ResNet variants of CLIP for
our optimization.

D. Ablations
Freestyle renders. We ablate on Freestyle render super-
vision in Fig. 11, instead running our method using opaque
surface renders. The resulting abstraction is reasonable, but
misses important geometric feature detail in the wheels and
side mirrors of the car.

SDF loss. We ablate on the SDF loss in Fig. 19. The SDF
loss prevents texture features from floating off the surface

Figure 13. Qualitative results for untextured shapes. We show
the result of our method on a collection of untextured meshes. Our
method is effective and robust on a wide collection of different
geometries.

implied by the rest of the strokes, such as the spots on Bob
circled in red.

Random Keypoints Ablation. We ablate on the keypoint
selection by running our method with the localized keypoint
loss weighted by random keypoints sampled from the sur-
face and compare the results to our method run without key-
point weighting (unweighted semantic loss). The results are
in Fig. 18. Note that the quality of our method with ran-
dom keypoints is the same as running our method with no
keypoints, demonstrating our robustness to non-meaningful
keypoints. Our localized keypoint loss is strictly better than
the unweighted semantic loss when the keypoints are mean-
ingful, and on par otherwise.

E. Additional Applications

Detail Refinement. We show an additional example of
keypoint-based abstraction refinement in Fig. 20. For our
refinement application, we freeze the existing curve set and
optimize 6 new curves randomly initialized in a local Gaus-
sian around each keypoint. We use the same losses as the
main method and only sample views where the keypoints
are visible, and optimize for 300 iterations.

Figure 14. Multi-view fidelity. WIR3D adheres to the abstracted object in a 3D-consistent manner such that its properties can be perceived
from every viewing angle.

Curve-Based Shape Deformation. Our deformation ap-
plication exploits the close correspondence between the op-
timized curves and key visual features on the input surface,
thanks to the SDF and keypoint localization losses. We de-

Figure 15. Stage 1 ablation. Stage 1 optimization is essential
for capturing the full extent of the input geometry. Without it, the
optimization tends to bias towards certain views, while the overall
abstraction experiences a “flattening” effect.

Figure 16. CLIP layers ablation. Supervising with the intermedi-
ate activations of CLIP is critical for maintaining coherent geom-
etry. Using only the fully-connected CLIP output results in rough
semantic abstraction, but the input shape geometric features are
not well-preserved.

velop a simple skinning system for the surface where each
vertex is assigned a set of skinning weights to points sam-
pled on all the curves in the scene. These skinning weights
are based on the L2 distance between each vertex and sam-
pled point, and a softmax is applied to ensure they sum to
1. Transformations to each curve can then be automatically
mapped to the surface through these skinning weights, and
the procedure can be performed at interactive speeds. We
implement this deformation system as a proof-of-concept
script, and show videos of the working system in the supple-
mental material, with screenshots displayed in Fig. 8. Note
that no smoothing postprocesses are applied to the mapped
transformations, and the smoothness of the deformations

Figure 17. Localized keypoint ablation. We show the influence
of our localized weighting framework when keypoints pinpoint se-
mantically meaningful features. The result without keypoints is
reasonable, but the face texture details are only captured with the
introduction of keypoints for spatial weighting.

Figure 18. Random keypoints ablation. We compare our method
with randomly sampled keypoints to our method with no keypoints
(unweighted semantic loss). Note that the result with random key-
points is of similar quality to our method without keypoints, which
demonstrates that our method is robust to non-meaningful key-
points.

Figure 19. SDF ablation. The SDF loss helps to ensure abstracted
visual features will stay anchored to the surface implied by the
strokes. Without it, some features may hover outside the surface,
such as the smaller spots on Bob.

Figure 20. Texture keypoint control. We expand on the keypoint
control example shown in the main paper with a textured example.
We show how by selecting keypoints on the texture on the plane,
we are able to refine the abstraction by incorporating those texture
elements.

Figure 21. Additional textured results. We show additional tex-
tured results from the Meta DTC dataset [40].

are a result of the effectiveness of the curves in interpolating
the quantities along the surface.

F. Additional Abstraction Results
Texture Abstractions. Additional results on textured
shapes are shown in Fig. 21. Our method is robust to
many different types of models ranging from manufactured
shapes with sharp edges to organic shapes with complex
curvature.

Scene Abstraction. We show an example of our method
run on a large scene in Fig. 22. Our method is able to re-
produce the global scene layout, and successfully abstracts
objects at different scales in the scene (e.g. house, trees,
animals).

G. Optimization Details.
For both stages, we optimize for 20000 iterations, sample
1 view per iteration, and use an ADAM optimizer with a
learning rate of 1e-3. For CLIP supervision we sample 4
augmentations per view. In stage 1 of the optimization, we
use the RN101 CLIP architecture, with λfc = 0.1. In stage
2, we use the RN50x16 architecture, λlpips = 0.1, λfc = 75,
and σ = 0.1.

Figure 22. Scene abstraction. Our method extends to scene abstraction. Note how our method reproduces the global scene layout and
captures all the objects in the scene despite the large scale differences.

H. User Study Screenshots
We show screenshots from our user study in Fig. 23. The
question order and the order of Wir3D versus 3Doodle as-
signment to “Sketch1/Sketch2” are randomized for each re-
spondent. All results shown are rotating gifs, so that users
can evaluate based on the full 360 views of the abstraction.
At the beginning of the study, we present three examples of
abstractions of different quality and explain the factors that
determine their quality, so that users can make more precise
judgments in their visual evaluation.

Figure 23. Perceptual Study Screenshots. Screenshots from our perceptual study. The question order and the order of Wir3D versus
3Doodle assignment to “Sketch1/Sketch2” are randomized for each respondent.

Figure 24. Comprehensive Localized Keypoint Loss. We show a comprehensive visualization of the localized keypoint loss.

	Introduction
	Related Work
	Method
	Curve Representation
	Losses
	Two-Stage Optimization

	Experiments
	Qualitative Results
	Baseline Comparisons
	Ablations
	Applications

	Conclusion
	Data Preprocessing
	Neural Edge Field Comparison
	Perceptual Metric Details.
	Ablations
	Additional Applications
	Additional Abstraction Results
	Optimization Details.
	User Study Screenshots

